Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 24(7): 1224-1238, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28524859

RESUMO

Mesenchymal stem cells (MSCs) protect tissues against cell death induced by ischemia/reperfusion insults. This therapeutic effect seems to be controlled by physiological cues released by the local microenvironment following injury. Recent lines of evidence indicate that MSC can communicate with their microenvironment through bidirectional exchanges of mitochondria. In particular, in vitro and in vivo studies report that MSCs rescue injured cells through delivery of their own mitochondria. However, the role of mitochondria conveyed from somatic cells to MSC remains unknown. By using a co-culture system consisting of MSC and distressed somatic cells such as cardiomyocytes or endothelial cells, we showed that mitochondria from suffering cells acted as danger-signaling organelles that triggered the anti-apoptotic function of MSC. We demonstrated that foreign somatic-derived mitochondria were engulfed and degraded by MSC, leading to induction of the cytoprotective enzyme heme oxygenase-1 (HO-1) and stimulation of mitochondrial biogenesis. As a result, the capacity of MSC to donate their mitochondria to injured cells to combat oxidative stress injury was enhanced. We found that similar mechanisms - activation of autophagy, HO-1 and mitochondrial biogenesis - occurred after exposure of MSC to exogenous mitochondria isolated from somatic cells, strengthening the idea that somatic mitochondria alert MSC of a danger situation and subsequently promote an adaptive reparative response. In addition, the cascade of events triggered by the transfer of somatic mitochondria into MSC was recapitulated in a model of myocardial infarction in vivo. Specifically, MSC engrafted into infarcted hearts of mice reduced damage, upregulated HO-1 and increased mitochondrial biogenesis, while inhibition of mitophagy or HO-1 failed to protect against cardiac apoptosis. In conclusion, our study reveals a new facet about the role of mitochondria released from dying cells as a key environmental cue that controls the cytoprotective function of MSC and opens novel avenues to improve the effectiveness of MSC-based therapies.


Assuntos
Apoptose , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Ácidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cocultura , Citoproteção/efeitos dos fármacos , Doxorrubicina/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Stem Cells ; 34(2): 392-404, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26439006

RESUMO

Urinary incontinence (UI) and erectile dysfunction (ED) are the most common functional urological disorders and the main sequels of radical prostatectomy (RP) for prostate cancer. Mesenchymal stem cell (MSC) therapy holds promise for repairing tissue damage due to RP. Because animal studies accurately replicating post-RP clinical UI and ED are lacking, little is known about the mechanisms underlying the urological benefits of MSC in this setting. To determine whether and by which mechanisms MSC can repair damages to both striated urethral sphincter (SUS) and penis in the same animal, we delivered human multipotent adipose stem cells, used as MSC model, in an immunocompetent rat model replicating post-RP UI and ED. In this model, we demonstrated by using noninvasive methods in the same animal from day 7 to day 90 post-RP injury that MSC administration into both the SUS and the penis significantly improved urinary continence and erectile function. The regenerative effects of MSC therapy were not due to transdifferentiation and robust engraftment at injection sites. Rather, our results suggest that MSC benefits in both target organs may involve a paracrine process with not only soluble factor release by the MSC but also activation of the recipient's secretome. These two effects of MSC varied across target tissues and damaged-cell types. In conclusion, our work provides new insights into the regenerative properties of MSC and supports the ability of MSC from a single source to repair multiple types of damage, such as those seen after RP, in the same individual.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Complicações Pós-Operatórias/terapia , Prostatectomia/efeitos adversos , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Ratos , Ratos Sprague-Dawley , Uretra/metabolismo , Uretra/patologia
3.
PLoS One ; 10(3): e0121579, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815884

RESUMO

BACKGROUND: Alteration of functional regenerative properties of parenchymal lung fibroblasts is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD). However, what these functions are and how they are impaired in COPD remain poorly understood. Apart from the role of fibroblasts in producing extracellular matrix, recent studies in organs different from the lung suggest that such cells might contribute to repair processes by acting like mesenchymal stem cells. In addition, several reports sustain that the Hedgehog pathway is altered in COPD patients thus aggravating the disease. Nevertheless, whether this pathway is dysregulated in COPD fibroblasts remains unknown. OBJECTIVES AND METHODS: We investigated the stem cell features and the expression of Hedgehog components in human lung fibroblasts isolated from histologically-normal parenchymal tissue from 25 patients--8 non-smokers/non-COPD, 8 smokers-non COPD and 9 smokers with COPD--who were undergoing surgery for lung tumor resection. RESULTS: We found that lung fibroblasts resemble mesenchymal stem cells in terms of cell surface marker expression, differentiation ability and immunosuppressive potential and that these properties were altered in lung fibroblasts from smokers and even more in COPD patients. Furthermore, we showed that some of these phenotypic changes can be explained by an over activation of the Hedgehog signaling in smoker and COPD fibroblasts. CONCLUSIONS: Our study reveals that lung fibroblasts possess mesenchymal stem cell-features which are impaired in COPD via the contribution of an abnormal Hedgehog signaling. These processes should constitute a novel pathomechanism accounting for disease occurrence and progression.


Assuntos
Fibroblastos/patologia , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/cirurgia , Células-Tronco Mesenquimais/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fumar/efeitos adversos
4.
BMC Med ; 11: 99, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557144

RESUMO

BACKGROUND: Long-term biodistribution of nanomaterials used in medicine is largely unknown. This is the case for alum, the most widely used vaccine adjuvant, which is a nanocrystalline compound spontaneously forming micron/submicron-sized agglomerates. Although generally well tolerated, alum is occasionally detected within monocyte-lineage cells long after immunization in presumably susceptible individuals with systemic/neurologic manifestations or autoimmune (inflammatory) syndrome induced by adjuvants (ASIA). METHODS: On the grounds of preliminary investigations in 252 patients with alum-associated ASIA showing both a selective increase of circulating CCL2, the major monocyte chemoattractant, and a variation in the CCL2 gene, we designed mouse experiments to assess biodistribution of vaccine-derived aluminum and of alum-particle fluorescent surrogates injected in muscle. Aluminum was detected in tissues by Morin stain and particle induced X-ray emission) (PIXE) Both 500 nm fluorescent latex beads and vaccine alum agglomerates-sized nanohybrids (Al-Rho) were used. RESULTS: Intramuscular injection of alum-containing vaccine was associated with the appearance of aluminum deposits in distant organs, such as spleen and brain where they were still detected one year after injection. Both fluorescent materials injected into muscle translocated to draining lymph nodes (DLNs) and thereafter were detected associated with phagocytes in blood and spleen. Particles linearly accumulated in the brain up to the six-month endpoint; they were first found in perivascular CD11b+ cells and then in microglia and other neural cells. DLN ablation dramatically reduced the biodistribution. Cerebral translocation was not observed after direct intravenous injection, but significantly increased in mice with chronically altered blood-brain-barrier. Loss/gain-of-function experiments consistently implicated CCL2 in systemic diffusion of Al-Rho particles captured by monocyte-lineage cells and in their subsequent neurodelivery. Stereotactic particle injection pointed out brain retention as a factor of progressive particle accumulation. CONCLUSION: Nanomaterials can be transported by monocyte-lineage cells to DLNs, blood and spleen, and, similarly to HIV, may use CCL2-dependent mechanisms to penetrate the brain. This occurs at a very low rate in normal conditions explaining good overall tolerance of alum despite its strong neurotoxic potential. However, continuously escalating doses of this poorly biodegradable adjuvant in the population may become insidiously unsafe, especially in the case of overimmunization or immature/altered blood brain barrier or high constitutive CCL-2 production.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Compostos de Alúmen/farmacocinética , Encéfalo/imunologia , Quimiocina CCL2/metabolismo , Músculos/imunologia , Nanopartículas , Vírion/patogenicidade , Animais , Ásia , Barreira Hematoencefálica/imunologia , Encéfalo/metabolismo , Movimento Celular , Quimiocina CCL2/sangue , Humanos , Imunização/efeitos adversos , Injeções Intramusculares/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Músculos/metabolismo , Distribuição Tecidual , Vacinas/administração & dosagem , Vacinas/efeitos adversos
5.
Rejuvenation Res ; 14(4): 353-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21548759

RESUMO

It has been suggested that increasing age is correlated with an acceleration of the progression of liver fibrosis induced by various agents, such as hepatitis C virus or chronic alcohol consumption. However, the cellular and molecular changes underlying this predisposition are not entirely understood. In the context of an aging population, it becomes challenging to decipher the mechanisms responsible for this higher susceptibility of older individuals to this acquired liver disorder. To address this issue, we induced liver fibrosis by carbon tetrachloride (CCl(4)) chronic administration to 8-week- and 15-month-old mice. We confirmed that susceptibility to fibrosis development increased with age and showed that aging did not affect fibrosis resolution capacity. We then focused on the impairment of hepatocyte proliferation, oxidative stress, and inflammation as potential mechanisms accelerating the development of fibrosis in the elderly. We detected no inhibition of hepatocyte proliferation after CCl(4) injury in 15-month-old mice, whereas it was inhibited after a partial hepatectomy. Finally, we observed that, in a context in which liver oxidative stress was not differentially increased in both experimental groups, there was a higher recruitment of inflammatory cells, including mostly macrophages and lymphocytes, oriented toward a T helper 2 (T(H)2) response in older mice. Our data show that in conditions of equivalent levels of oxidative stress and maintained hepatocyte proliferative capacity, an increased inflammatory reaction mainly composed of CD4(+) lymphocytes and macrophages expressing T(H)2 cytokines is the main factor involved in the higher susceptibility to fibrosis with increasing age.


Assuntos
Envelhecimento/patologia , Suscetibilidade a Doenças , Inflamação/complicações , Inflamação/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Animais , Tetracloreto de Carbono , Proliferação de Células , Doença Crônica , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Estresse Oxidativo
6.
World J Gastroenterol ; 17(8): 968-75, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21448348

RESUMO

AIM: To develop and validate a transient micro-elastography device to measure liver stiffness (LS) in mice. METHODS: A novel transient micro-elastography (TME) device, dedicated to LS measurements in mice with a range of measurement from 1-170 kPa, was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston. The novel probe was validated in a classical fibrosis model (CCl(4)) and in a transgenic murine model of systemic amyloidosis. RESULTS: TME could be successfully performed in control mice below the xiphoid cartilage, with a mean LS of 4.4 ± 1.3 kPa, a mean success rate of 88%, and an excellent intra-observer agreement (0.98). Treatment with CCl(4) over seven weeks drastically increased LS as compared to controls (18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa). Moreover, fibrosis stage was highly correlated with LS (Spearman coefficient = 0.88, P < 0.01). In the amyloidosis model, much higher LS values were obtained, reaching maximum values of > 150 kPa. LS significantly correlated with the amyloidosis index (0.93, P < 0.0001) and the plasma concentration of mutant hapoA-II (0.62, P < 0.005). CONCLUSION: Here, we have established the first non-invasive approach to measure LS in mice, and have successfully validated it in two murine models of high LS.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Fígado/patologia , Amiloidose/induzido quimicamente , Amiloidose/patologia , Animais , Tetracloreto de Carbono/toxicidade , Feminino , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos
7.
Lab Invest ; 91(2): 273-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20856227

RESUMO

The role of hepatocyte apoptosis in the physiopathology of obstructive cholestasis is still controversial. Although some data have strongly suggested that hepatocellular cholestatic injury is due to Fas-mediated hepatocyte apoptosis, some others concluded that necrosis, rather than apoptosis, represents the main type of hepatocyte death in chronic cholestasis. Moreover, it has also been suggested that the reduced liver injury observed in the absence of Fas receptor after bile duct ligation was not due to lower hepatocyte apoptosis but to the indirect role of this receptor in non-hepatocytic cells such as cholangiocytes and inflammatory cells. The aim of this work was therefore to determine whether a protection against cell death limited to hepatocytes could be sufficient to reduce liver injury and delay cholestatic fibrosis. With this purpose, we performed bile duct ligation in transgenic mice overexpressing Bcl-2 in hepatocytes and in wild-type littermates. We found that, compared with necrosis, apoptosis was negligible in this model. Our results also showed that hepatocyte Bcl-2 expression protected hepatocytes against liver injury only in the early steps of the disease. This protection was correlated with reduced mitochondrial dysfunction and lipid peroxidation. However, in contrast to Fas receptor-deficient lpr mice, fibrosis progression was not hampered and liver inflammatory response was not reduced by Bcl-2 overexpression. These results therefore comfort the hypothesis that Fas-mediated apoptotic hepatocyte pathway is not a significant contributing factor to the clinical features observed in cholestasis. Moreover, in the absence of a blunted inflammatory response in transgenic mice, Bcl-2 protection against hepatocyte mitochondrial dysfunction and lipid peroxidation was not sufficient to block fibrosis progression.


Assuntos
Apoptose/fisiologia , Colestase Intra-Hepática/metabolismo , Hepatócitos/metabolismo , Necrose/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Ductos Biliares/cirurgia , Western Blotting , Caspases/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Técnicas Histológicas , Marcação In Situ das Extremidades Cortadas , Ligadura , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Pathol ; 175(5): 1929-37, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808650

RESUMO

Accumulating evidence indicates that oxidative stress is involved in the physiopathology of liver fibrogenesis. However, amid the global context of hepatic oxidative stress, the specific role of hepatocyte mitochondrial dysfunction in the fibrogenic process is still unknown. The aim of this study was to determine whether a targeted protection of hepatocytes against mitochondrial dysfunction could modulate fibrosis progression. We induced liver fibrogenesis by chronic carbon tetrachloride treatment (3 or 6 weeks of biweekly injections) in transgenic mice expressing Bcl-2 in their hepatocytes or in normal control mice. Analyses of mitochondrial DNA, respiratory chain complexes, and lipid peroxidation showed that Bcl-2 transgenic animals were protected against mitochondrial dysfunction and oxidative stress resulting from carbon tetrachloride injury. Picrosirius red staining, alpha-smooth muscle actin immunohistochemistry, and real-time PCR for transforming growth factor-beta and collagen alpha-I revealed that Bcl-2 transgenic mice presented reduced fibrosis at early stages of fibrogenesis. However, at later stages increased nonmitochondrial/nonhepatocytic oxidative stress eventually overcame the capacity of Bcl-2 overexpression to prevent the fibrotic process. In conclusion, we demonstrate for the first time that specific protection against hepatocyte mitochondrial dysfunction plays a preventive role in early stages of fibrogenesis, delaying its onset. However, with the persistence of the aggression, this protection is no longer sufficient to impede fibrosis progression.


Assuntos
Hepatócitos/citologia , Hepatócitos/patologia , Mitocôndrias Hepáticas , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Tetracloreto de Carbono/toxicidade , Caspases/metabolismo , Progressão da Doença , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Metabolism ; 58(4): 525-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19303974

RESUMO

Overactivation of poly(adenosine diphosphate-ribose) polymerase (PARP), an enzyme involved in cellular response to DNA injury resulting from oxidative and nitrosative stress, is considered to play a key role in the pathogenesis of diabetes complications by promoting numerous vascular dysfunctions. In this study, we examined the ability of metformin, which was reported to possess intrinsic vasculoprotective properties independently of its antihyperglycemic effects, to inhibit PARP activation induced by high glucose concentrations in bovine aortic endothelial cells; and we investigated the potential mechanisms involved in this inhibition. The PARP activity was measured by cellular enzyme-linked immuno-specific assay (CELISA) method; cell poly(ribosyl)ated protein polymer accumulation was evaluated by immunofluorescence. Peroxynitrite anion productions were determined using dihydrorhodamine 123 fluoroprobe; and expression of p47phox subunit of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase was analyzed by Western blot in the absence and presence of protein kinase C and NAD(P)H oxidase inhibitors (calphostin and diphenyleneiodonium chloride, respectively). Our data showed that a therapeutically relevant concentration of metformin (5.10(-5) mol/L) was able to abolish PARP activation, to reduce poly(ribosyl)ated protein polymer accumulation, to decrease intracellular peroxynitrite anion level, and to reverse the overexpression of p47phox in bovine aortic endothelial cells stimulated by 25 mmol/L glucose in a similar manner to that of calphostin or diphenyleneiodonium chloride. Taken together, these results suggest that metformin could inhibit glucose-induced PARP activation through blockade of a protein kinase C-dependent NAD(P)H oxidase activation pathway. We propose that some of the beneficial effects of metformin on vascular endothelial cell functions in diabetes may be related to its inhibitory effect on PARP overactivation and its deleterious consequences.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Glucose/administração & dosagem , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Western Blotting , Bovinos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Ativação Enzimática , Imunofluorescência , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...